In order to unify the selection procedure for all IITs in India, all IITs jointly organize the JEE Advanced exam every year. All candidates aspiring to acquire admission in one of the 22 IITs and ISM (Indian School of Mines) need to clear the JEE Advanced exam.
JEE Advanced is an exam conducted by seven zonal IITs with one IIT taking up the responsibility every year. Apart from the IITs and NITs, some topranked institutes like IISC (Indian Institute of Science), Rajiv Gandhi Institute of Petroleum Technology and the IISER (Indian Institute of Science Education and Research) grant admissions on the basis of scores obtained in JEE Advanced. The students who clear the JEE MAINS exam are only eligible to appear for the exam.
Date 
Description 
To be Notified 
Registration Start for JEE Advance 
To be Notified 
Registration Closed for JEE Advance 
To be Notified 
Admit Cards are available for download 
To be Notified 
JEE Advanced Paper 1 
To be Notified 
JEE Advanced Paper 2 
To be Notified 
Display of Answer sheets 
To be Notified 
Answer Key is released 
To be Notified 
Last date of filing an objection for Answer Key 
To be Notified 
Results of JEE Advance 
To be Notified 
Registration Start for Architecture Aptitude Test (AAT) 
To be Notified 
Architecture Aptitude Test (AAT) 
To be Notified 
Results of AAT 
General topics
The concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidationreduction, neutralization, and displacement reactions; Concentration in terms of mole fraction, molarity, molality, and normality.
Gaseous and liquid states
The absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.
Atomic structure and chemical bonding
Bohr model, spectrum of hydrogen atom, quantum numbers; Waveparticle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).
Energetics
First law of thermodynamics; Internal energy, work, and heat, pressurevolume work; Enthalpy, Hess’s law; Heat of reaction, fusion, and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.
Chemical equilibrium
Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature, and pressure); Significance of ΔG and ΔG^{0} in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.
Electrochemistry
Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.
Chemical kinetics
Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).
Solid state
Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), the closepacked structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbors, ionic radii, simple ionic compounds, point defects.
Solutions
Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.
Surface chemistry
Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).
Nuclear chemistry
Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to protonneutron ratio; Brief discussion on fission and fusion reactions.
Isolation/preparation and properties of the following nonmetals
Boron, silicon, nitrogen, phosphorus, oxygen, sulphur, and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.
Preparation and properties of the following compounds
Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.
Transition elements (3d series)
Definition, general characteristics, oxidation states and their stabilities, color (excluding the details of electronic transitions) and calculation of spinonly magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cistrans and ionization isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).
Preparation and properties of the following compounds:
Oxides and chlorides of tin and lead; Oxides, chlorides, and sulphates of Fe^{2+}, Cu^{2+}, and Zn^{2+}; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.
Ores and minerals
Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminum, zinc and silver.
Extractive metallurgy
Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Selfreduction method (copper and lead); Electrolytic reduction method (magnesium and aluminum); Cyanide process (silver and gold).
Principles of qualitative analysis:
Groups I to V (only Ag^{+}, Hg^{2+}, Cu^{2+}, Pb^{2+}, Bi^{3+}, Fe^{3+}, Cr^{3+}, Al^{3+}, Ca^{2+}, Ba^{2+}, Zn^{2+}, Mn^{2+} and Mg^{2+}); Nitrate, halides (excluding fluoride), sulphate and sulphide.
Concepts
Hybridisation of carbon; σ and πbonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, monofunctional and bifunctional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Ketoenoltautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.
Preparation, properties, and reactions of alkanes
Homologous series, physical properties of alkanes (melting points, boiling points, and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.
Preparation, properties, and reactions of alkenes and alkynes
Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO_{4} and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X_{2}, HX, HOX and H_{2}O (X=halogen); Addition reactions of alkynes; Metal acetylides.
Reactions of benzene
Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, FriedelCrafts alkylation, and acylation; Effect of o, m and pdirecting groups in monosubstituted benzenes.
Phenols
Acidity, electrophilic substitution reactions (halogenation, nitration, and sulphonation); ReimerTieman reaction, Kolbe reaction.
Characteristic reactions of the following (including those mentioned above)
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl_{2}/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).
Carbohydrates
Classification; mono and disaccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
Amino acids and peptides
General structure (only primary structure for peptides) and physical properties.
Properties and uses of some important polymers
Natural rubber, cellulose, nylon, teflon and PVC.
Practical organic chemistry:
Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino, and nitro; Chemical methods of separation of monofunctional organic compounds from binary mixtures.
Algebra
Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.
Quadratic equations with real coefficients, relations between roots and coefficients, the formation of quadratic equations with given roots, symmetric functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.
Logarithms and their properties.
Permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skewsymmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.
Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of the probability of events using permutations and combinations.
Trigonometry
Trigonometric functions, their periodicity, and graphs, addition and subtraction formulae, formulae involving multiple and submultiple angles, the general solution of trigonometric equations.
Relations between sides and angles of a triangle, sine rule, cosine rule, halfangle formula and the area of a triangle, inverse trigonometric functions (principal value only).
Analytical geometry
Two dimensions: Cartesian coordinates, the distance between two points, section formulae, the shift of origin.
Equation of a straight line in various forms, angle between two lines, the distance of a point from a line; Lines through the point of intersection of two given lines, an equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.
An equation of a circle in various forms, equations of tangent, normal and chord.
Parametric equations of a circle, the intersection of a circle with a straight line or a circle, an equation of a circle through the points of intersection of two circles and those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.
Locus problems.
Three dimensions: Direction cosines and direction ratios, an equation of a straight line in space, an equation of a plane, the distance of a point from a plane.
Differential calculus
Realvalued functions of a real variable, into, onto and onetoone functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.
Limit and continuity of a function, limit, and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions.
Even and odd functions, the inverse of a function, continuity of composite functions, intermediate value property of continuous functions.
The derivative of a function, the derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents, and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem.
Integral calculus
Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus.
Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.
Formation of ordinary differential equations, the solution of homogeneous differential equations, separation of variables method, linear first order differential equations.
Vectors
Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.
General
Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using uv method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.
The pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, the equation of continuity, Bernoulli’s theorem and its applications.
Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).
Thermal physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (C_{v} and C_{p} for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.
Electricity and magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a currentcarrying straight wire, along with the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a currentcarrying wire in a uniform magnetic field.
The magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.
Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with d.c. and a.c. sources.
Optics
Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s doubleslit experiment.
Modern physics
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Halflife and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogenlike atoms; Characteristic and continuous Xrays, Moseley’s law; de Broglie wavelength of matter waves.
Freehand drawing
This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or daytoday life usable objects like furniture, equipment, etc., from memory.
Geometrical drawing
Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles, etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders, etc.
Threedimensional perception
Understanding and appreciation of threedimensional forms with building elements, colour, volume, and orientation. Visualization through structuring objects in memory.
Imagination and aesthetic sensitivity
Composition exercise with given elements. Context mapping. Creativity check through the innovative uncommon test with familiar objects. The sense of colour grouping or application.
Architectural awareness
General interest and awareness of famous architectural creations – both national and international, places and personalities (architects, designers, etc.) in the related domain.
Q.1. What is the entry/registration fee for the exam?
Ans. The entry fee for the exam varies with mode of exam and caste
Type of Candidate 
Fees 
For Centres in India 

Female 
Rs.1300 + GST 
SC/ST/PWD 
Rs.1300 + GST 
Others 
Rs.2600 + GST 
Late Fee 
Rs.500 + GST 
For Centres outside India 

SAARC countries 
$160 + GST 
NonSAARC countries 
$300 + GST 
Late Fee 
$80 + GST 
Q.2. What is the computerbased exam?
Ans. The exam is supposed to be given on a computer in the respective examination center mentioned on the Admit Card.
Q.3. It is an online exam; does it mean I can give it from my home?
Ans. No. You must be present at your respective examination center.
Q.4. From where can I prepare for the exam?
Ans. You need to be very careful while selecting your study material. The exam stands as a difficulty level in itself.
Q.5. What languages can the exam be given?
Ans. The exam can be given in English and Hindi.
Q.6. If I clear JEE Advance, is my seat in an IIT fixed?
Ans. This is not the case. Apart from an AIR in JEE Advance, you must fulfill all the different criteria for the specific IIT you want to take admission in. There is also the castewise seat reservation in the institutes. You must take care of them too.
Q.7. During JEE Main registration I mentioned the wrong category, can I correct it while filling the form for JEE Advance?
Ans. No, you cannot.
The top scorers at JEE Advanced 2017 are
AIR 1 – Sarvesh Mehtani
AIR 2 – Akshat Chugh
AIR 3 – Ananya Agarwal